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AbstracL An inverse scattering vansform is developed to solve the Landau-Lifschik equation 
for a spin chain with an easy axis. Instead of introducing the Riemann surface. which is 
required for double-valued functions of the usual specbal parameler A ,  the transform is developed 
by making use of an auxiliary parameter I .  The Marchenko equation, soliton solutions and 
asymplotic behaviours are derived. The results reduce nahlrally to those for the isotropic chain 
when the anisotropy vanishes. 

1. Introduction 

The equation of a continuous one-dimensional ferromagnet, known as the Landau-Lifschitz 
equation (Landau and Lifschitz 1935), has attracted much attention in the past two decades. 
A complete study for the isotropic case was first given by means of the inverse scattering 
transform (Laksmanan 1977, Takhtajan 1977, Fogedby 1980). The gauge isomorphism 
between it and the non-linear Schrodinger equation was demonstrated by Zakharov and 
Takhtajan (1979). 

For the case of complete anisotropy, its Lax pair was found by Sklyanin (1979); it was 
then shown that the problem can be reduced to the Riemann boundary value problem on a 
torus, and was studied by using the method of the Riemann problem (Michailov 1980, 1982, 
Rodin 1983, 1984). However, the derivation and results are complicated and are expressed 
in terms of elliptic functions; the final results, such as the expression of the one-soliton 
solution, have never been obtained in an explicit manner. The problem can therefore by no 
means be considered as complete. 

For anisotropy of the easy axis type, it is difficult to obtain the one-soliton solution 
by the method of integration after separating the variables (Tjou and Wright 1977). The 
problem was attacked by some authors (Bolovik 1978, Bolovik and Kulinich 1984) using 
the inverse scattering transform, but the study was not completed since the expressions of 
soliton solutions were not obtained. 

An attempt was made to construct the exact multi-soliton solutions with the direct 
method of Hirota (Bogdan and Kovalev 1980). However, the authors were unable to prove 
a series of non-hivial identities on the parameters of the solution at the end. Explicit 
expressions for multi-solitons were not found. Recently, phaseshift analyses have been 
performed with the direct method of Hirota (Svendsen and Fogedby 1993). 

The difficulty in using the inverse scattering transform to study the present problem 
lies in the complexity due to the Riemann surface, required for a double-valued function of 
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the usual spectral parameter A. To avoid this difficulty, an auxiliary parameter f (see. (6) 
and (7)) is introduced. In terms of this parameter an inverse scattering transform procedure 
is performed without difficulty. The Marchenko equation is derived and soliton solutions 
are found by solving it in the reflectionless case. Asymptotic behaviours in the limits as 
t + rtco are obtained as desired. 

2. The Landau-Lifschitz equation for a spin chain with an easy axis 

The Landau-Lifschitz (LL) equation for a spin chain with an easy axis is 

St = S X S,, + S x JS IS1 = 1 (1) 

where the diagonal matrix J 

J = diag(O,O, 1 6 ~ ' )  (2) 

characterizes the easy axis, the 3-axis. Here p is a real constant and the factor 16 is 
introduced for later convenience. The Lax pair of the equation is given by 

L = - i ~ & q  - ip(SIu1 + SZS) (3) 

- iK(SISLr - SZS1,)03 (4) 

Z M = i2p S3u3 + iWK(Slu1 + Szud - ip(S& - &S7&l - ip(S3SlX - &&,)oi 

where parameters K and p satisfy 

p2 = K 2  f 4p2. 

If one of these parameters is taken to be an independent parameter, then the other is a 
double-valued function of the first, and it is then necessary to introduce a Riemann surface. 
To avoid the complexity brought about by a Riemann surface, we introduce an auxiliary 
parameter t so that 

K = C - p2t-' (6)  

p = + p2c-I. (7) 

We shall drop the arguments x and t henceforth, unless it is necessary to show them. 
Since the 3-axis is an easy axis 

S - t S , = ( O , O , I )  as IXI'C-3 (10) 

we then have 

& W X ,  C) = Lo(F)E(x, C) (11) 
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where 

i.e 

The Jost solution V ( x ,  5 )  of (8) is defined as 

V ( x ,  <) + E ( x ,  <) as x -+ 00. 

By using standard procedures of the theory of characteristics, one can find the following 
integral representation: 

‘J’(x3 5 )  = E @ ,  5 )  + K (16) 

where the superscripts ‘d’ and ‘nd’ denote the diagonal and the non-diagonal parts of the 
matrix, respectively, and 

K ( x ,  +CO) = 0. (17) 

In fact. the procedure is as follows. First, let us suppose that the representation (16) 

(18) 

(19) 

(20) 

(21) 

m m 

dyKd(x, Y )  E(y. 0 + P /  dyK”(x, Y )  E(y. <) 
x 

holds. Then substituting (16) into (S), and integrating by parts, one can obtain 

iu3 + K ~ ( x , x )  - is303 - ~ 3 0 3 ~ ~ ( x , x ) u 3  - (Slal + ~ z s ) ~ ” ~ ( x ,  x)u3 = o 
K ’ ~ ( x , x )  - i(Slul+ &uz) - S ~ U ~ K ~ ~ ( X , X ) U ~  - (s~u, + s ~ u ~ ) K ~ ( x ,  x)u3 = o 
K J d k  Y b 3  + (SlUl + Szuz)K,d(x, Y )  + SV3K,”d(X, Y )  = 0 

K,d(x, Y k 3  + (SlUl + Szs )K ,”d(x ,  Y) + S303K,d(x, Y )  = 0 

KJ$x, Y N 3  + (SlUl + SzUz2)K;Jx. Y )  + S 3 0 3 K 3 x ,  Y) - 4 P  K ( x ,  Y )  = 0 

y = x 

Y b x 

2 n d  Y b x .  
(22) 

Equations (18H22) form a Coursal differential problem and can be transformed into a 
system of integral equations. From the theory of characteristics, there exists a unique 
solution of the equations (21) and (22) under the conditions (1XH20). That is, the 
assumption (16) is valid. An important relation follows: 

(S. a) = ( I  - iK(x, x)us)u3(1- iK(x, x ) q - ’ .  

@(x,  5 )  -+ E ( x ,  <) as x + -CO (24) 

(23) 

Similarly, the Jost solution @ ( x ,  f) of (8) is defined as 

and 

0 = E ( x ,  I ‘ )  + K [md~Nd(x, Y )  E(Y ,  5 )  + F / ’  dyNnd(x, Y )  E(Y. <) (25) 

N ( x ,  -w) = 0. (26) 

-m 
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3. The properties of the Jost solutions 

In the plane of complex <. one can see the correspondence 

r e a l < + + r e a l ~  h ~ > O c t I m ~ > O  h < < O c * I m ~ c O .  (27) 

Hence, with the help of (16) and (ZO), analyticities of the Jost solutions W({) and a(<) can 
be simply derived and the results are similar to those in the case of the NLS equation. We 
write the expressions for real { 

W ( X .  t) = ($@. t) !m)) 0 = (w E ) ,  $(4 0) (28) 

(29) @ ( X >  t) = w. 1')T(<) 

where 

From (29) it follows that 

@ ( 5 )  = a(f)$(<) + b(Ol/r(t) (31) 

for example. 
The terms $(<), @(<) and a ( t )  can be analytically continued into the upper-half plane 

of complex <, while $({). J(<) and Z(c) the lower-half plane of complex 1'. Furthermore 
we have 

- 
$(<I = i G Z Z 5  &t) = -ioz@(X, F )  (32) 

a) =.ti). (33) 
- 

However, b ( ( )  and i(t) cannot be analytically continued out of the real axis of (, in 
general. It has the following properly: 

- 
&k') = b ( < )  (34) 

for real <. 
at t,, C 2 , .  . .; one has 

In the upper-half plane of <, a(<)  may have zeros. Suppose the zero points of a ( ( )  are 

@(tn) = b n @ ( t n ) ,  (35) 

From (33), in the lower-half plane of (. air) has zeros, 5.1, 5.2, . . ., and 

,&in) = -i i$(k).  (36) 
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4. The reduction properties of the Jost solutions 

From (3) and (4) 

L ( - p 2 5 - ' )  = u3L(<)u3 M(-p*<-') = U3M(C)U3 (37) 

and (13) 

FO(-p2<-') = u3F0(<)03 (38) 

one can obtain 

$(L -PZC-') = u3$(x, C )  w,  -PZI- ')  = - ~ z l l . ( x , F )  (39) 

(40) + ( x ,  -P25- ' )  = SW, Z) &x, -P 5 ) - -u3 i (x ,  5 )  2 -1 - 

and 

the Jost solutions, a(<). leave K invariant; this property is called the reduction transformation 
property. 

From (41). if <" is a zero point of a(c), then -p2r;' is also a zero point of a(t1. We 
write 

then from (39) and (40) it follows that 

Integrating by p"s, from (15) one can obtain 

as IC1 -+ 00. @ ( x , t )  = W) 
Similarly, from (21) we have 

Hence we have 

lim a(<) = m(constant). 
Icbm 
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With the aid of (39) and (40) we also see 

h a(<) =@(constant). (49) 
Ikl'O 

Suppose a(F) has N pairs of zeros, 51. c2. I . . ,  <2N, labelled according to (44). The 
factor of a ( ( )  due to these zeros, ad(<) is 

The factor of a(<) due to the continuous specmm, a&) is 

When 5 tends to the real axis, we take 5 + io as I' in the integral. 
We then obtain 

a(c) = ad([)%(<), (52) 

In the limit p -+ 0, a( ( )  reduces to the corresponding expression in the case of an isotropic 
chain. 

It is obvious that 

Hence the integral in (41) is equal to the residues at f and -p21.-'. When 5 = p or -p, 
the integral vanishes, on account of (40). Therefore, we have 

a(p) = a(-p) = 1. (54) 

5. The Marcbenko equation 

From (32) we have 

a(<)-'b& f )  - E.I(~, 5 )  = ?hz, 0 - E.&, 0 + r ( t ) @ k  5 )  (55) 

where r ( 5 )  = b(I')/a(t). Multiplying it by (ZJIK)-I exp(iKx) in the case of y > x ,  and 
integrating with respect to I' along a path r which is the real axis from -CO to CO, except 
in the neighbourhood of p and -p where it is replaced by two small semi-circles in the 
lower half plane, we obtain the Marchenko equation: 
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where y z x and 

2rr ' S  
2 N  

F'(x) = Cc,eiKnX + - d p ( ( ) d "  
"=l 

Here we have used 

We notice that on the left-hand side the contributions due to poles at p and -p cancel each 
other out, due to (54). 

With the property 

we obtain from (56) 

Equations (56) and (65) are the desired Marchenko equation. 

equation (9). It can be achieved by the following replacements: 
The time dependence can be obtained by standard procedures from the second Lax 

where b((,O) etc, are constants. 
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6. The reflectionless case 

In the reflectionless case, +(<) = 0, the Marchenko equation can be considerably simplified. 
From (43) we have 

(69) -2 2 '  i r ( C ~ + . ) = p  5,a(L) n = 1 , 2 , . . . , N .  

Hence we obtain 

(70) 1 -2 CM+" = -p 5" cn. 

Noticing that the transformation (42) leaves K unchanged, we have 

K N + ~  = Kn (71) 

PN+n = -fin. (72) 

Taking these three formulae into consideration, from (57)459) we have in the 
reflectionless case 
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Writing 

KII(X,Y)  = K I I ( x ) D ( Y ) ~  
equations (76) and (77) are now written in matrix form: 

K d x ,  Y )  = K i z ( x ) D ( Y ) .  

KII(X) + K l z ( x ) A " ( ~ )  = 0 

Kiz(x) -CO - KII(x)A'(x) = 0 
where A'(x)  and A"(x) are N x N matrices: 

- 1  
- det (I + A"A' + ZTz) - 

det ( I  + A"A') 

1 - iK11 ( x ,  x )  = 1 + iF(1 + ANA')-'A"DT = 1 + Tr[iA"DTc(Z + A"A')-'1 
det ( I  + A"B') 
det (I + A"A') 

~'(1) = A'(x) + iD(xlTC(X) 

- - 

where 

or 

The expression for q5 can be written as 

$+=- argKlz - i K d .  

454 I 

(83) 
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I .  The one-soliton solution 

When N = 1 ,  from (90) and (91) we have 

where 

and c10 is a constant. 
Introduce 

where 

Substituting into (98), we obtain 

When p + 0, we have 

equations (107) and (108) tend obviously to those of the isotropic chain. 
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S. Explicit expressions of multi-soliton solutions 

From equation (A3) in the appendix, it is convenient to express i(t) in terms of K .  

Equation (49) is expressed as 

K - K. in 
K - en K, f I ( K )  = n 

"=I 

Hence we have 

and 

Therefore, we have 

L bn 
Kn U(G) 

C" = --. 

With this notation, we write 

A det(1 + A"A') 

and then (114) can be expressed as 

and 

Equation (1 18) can be expressed as 

f n  = ei%e-Q. 



Similarly, we also have 

Alz EE det(2 + Q"Q') - det(2 + A"A') 

where n ,  n' and m, m' satisfy ( A l l ) .  
Writing 

G = I -iKa3 

we then have 

GI] = A-IAII Glz = A-' Alz. 

Hence we have 

and 

4 = - arg A12 - a g  Al l .  (132) 

It can be seen that the formulae reduce to those for the anisotropic chain when p vanishes, 
as we have seen. in the one-soliton case. 



Inverse scattering tramform for a spin chain with an eary axis 4545 

9. Asymptotic behaviours in the limit t + +CO 

Since all K$ are positive, we suppose 

Kf > K; > ... > K h .  (133) 
The vicinity of x = x. + 4 ~ ; t  will be denoted by an. In the limit t + 03 these vicinities 
must separate, from left to right, as 

x -xm -4KLf + +CO If,[ + 0 m > j .  (136) 

(137) 

(138) 

(139) 

12. Substituting the explicit 

(140) 

Therefore, in this case, we have 

A N  A( l ,2 ,  ..,, j - 1 ;  1,2, ..., j - l ) + A ( l , 2 ,  ..., j ;  1,2, ..., j )  

All  - A 1 1 ( 1 , 2 , . . . , j -  1 ;  1 , 2 , . . . .  j -  1)+A11(1,2,..., j ;  1.2,..., j )  

A12 - A , ~ z ( l ,  2,  . . , j ;  0. 1 .  . . . , j - 1 )  

since we retain the terms proportional to Ifi lzlfilz. , 
expressions (116), (123) and (128), except for a common factor, they become 

A -  1+\4 (+) I 2 -  K j K j  -1 pjb;' 

where 

Therefore, when f -+ 03, the N-soliton solution in the vicinity st,, is approximately equal 
to the one-soliton solution with fi replaced by fi"). The additional displacement of the 
centre is 

and the additional phase shift is 

Similarly, when t + -w, in the vicinity Qj,  the approximate N-soliton solution can 
be obtained from the above formulae by the simple replacements 

I 10 IO 10 . 
Therefore, the total displacement of the centre and the total phase shift of the j t h  peak in 
the course from t --f -w to t + 03 are 2x7)  and 2$;'. respectively. 

(146) 3 x! - )  = +) 0. (+) + a!-) = -a<+) 
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10. Conclusion 

Though the Marchenko equation for the spin chain with an easy axis seems rather more 
complicated than that for the isotropic chain, the above calculational procedure considerably 
simplifies the final results. Equations (116), (125) and (128) have some factors, such 
as Z,$;l~;lpm, which appear in the corresponding formulae for the isotropic chain, in 
addition to the different time dependence (66H68). Therefore, the work to solve the 
Landau-Lifschitz equation for a spin chain with an easy axis is now complete. 
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Appendix 

By means of the Binet-Cauchy formula, we obtain 

N 

det(1 + A"A') = 1 + c 
r=l IGnj ottc.-c%<N I<ml<m lc...cm,GN 

x A " ( n ~ , n z ,  . . . , n , ;  m l ,  mz, ' '  ., m,)A'(ml, m z . .  .., m,;  n l ,  n?, . .. , n,) 
(AI) 

where A"(nl, n2, .. ' ,  n,; m l ,  mz ,  ' .  ' ,  m,)  denotes a minor that is a determinant of a 
submatrix of A" by the remaining (nl, nz. . . , n,)th rows and ( m l ,  m z , .  . . , m,)th columns. 
By using the well known formula from linear algebra 
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and 

A"(n~,nz. . . ' ,  n,; mi.  m2, .. ' ,  m,)B'(mi, mz, I ., m,; nl ,  nz, .. . , n,) = (-1)' 
X n nZnFnDmC:i?i,- 'Km(in - Km)-' n n (tn - &)2(Km - Km,)'. 

n m  n<n' mcm' 

-T- To calculate det(2 + A"A' + D C ,  we introduce an N x ( N  + 1) matrix Q" and an 

(A7 ) 

( N  + 1) x N matrix Q :  
- 

I! Qf QL = A m  Qi,, = -iD, QL, = A:, "0 - jcn 
with n,  m = 1.2, ' .  . , N .  We thus have 
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